Lecture 11: Classical Probabilistic IR: 2-Poisson model

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 10
What we’ll learn in this lecture

Non-binary probabilistic models for IR
- Two-Poisson model
- BM25
Binary independence model

- Binary independence uses term occurrence 0, 1
- Models $p_t^{\{1\}} = P(d_t = 1|R, q)$ as Bernoulli RV, with param p
- p estimated as prop of rel docs that t occurs in.
- Similarly $u_t^{\{1\}} = P(d_t = 1|\bar{R}, q)$, param u
- u estimated as prop of irrel docs that t occurs in.

Weight w_t of query term t occurring in document d is then:

$$w_t^{\{1\}} = \log \frac{p_t^{\{1\}}(1 - u_t^{\{1\}})}{u_t^{\{1\}}(1 - p_t^{\{1\}})}$$

(1)

Note that $1 - p_t^{\{1\}}$, $1 - u_t^{\{1\}}$ terms are for documents where query terms do not occur (see working from last lecture)
\textit{n-ary frequency}

Represent document as vector of term frequencies:

\[
\vec{d} = \langle d_1, \ldots, d_{|T|} \rangle, \quad d_i \in \{0, 1, 2, \ldots\}
\]

Then an equivalent \textit{n-ary} expression for Equation 1 is\footnote{Robertson and Walker, “Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval”, \textit{SIGIR}, 1994.}

\[
w_{tf} = \log \frac{p_{tf} u_0}{u_{tf} p_0}
\]

where

\[
\begin{align*}
 p_{tf} &= P(f_{d,t} = f|R,q) ;
 u_{tf} = P(f_{d,t} = f|R,q) , \quad f \in \{1, 2, \ldots\} \\
 p_0 &= P(f_{d,t} = 0|R,q) ;
 u_0 = P(f_{d,t} = 0|R,q)
\end{align*}
\]

\textbf{NOTE:} \(p_0 \neq (1 - p_{tf}) \); \(p_0 \) models non-occurrence, not complement of \(p_{tf} \)
Modelling $f_{d,t}$

- We need some model of:

$$p_{tf} = P(f_{d,t} = f|R, q) \quad (3)$$

and u_{tf}, p_0, u_0 as probability distributions

- that is, of $f_{d,t}$ as a random variable over $\{0, 1, 2, \ldots\}$

- Simplest suitable distribution is Poisson
 - Simple because it only requires us to estimate one parameter (like Bernoulli)
The Poisson process

Poisson process

A process in which events occur over time(-like dimension) independently and at random, e.g.:

- arrival of radioactive particles at Geiger counters
- emails to mail server
- failure of electronic components

More formally:

- Rate of arrivals λ is constant over time
The Poisson process

Poisson process

A process in which events occur over time(-like dimension) independently and at random, e.g.:

- arrival of radioactive particles at Geiger counters
- emails to mail server
- failure of electronic components

More formally:

- Rate of arrivals λ is constant over time
- Expected arrivals in interval u is λu
- Number of arrivals in disjoint intervals independent
A random variable X has Poisson distribution with param λ if:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad \text{for } k = 0, 1, 2, \ldots$$

- X is number of arrivals in unit interval of a Poisson process.
- λ estimated as observed average arrivals
The Poisson Model

- Term frequency can be modelled as a Poisson process
- Assumes that terms occur “randomly” in documents
- ... around some common rate

One-Poisson Model

\[P(f_{d,t}) \sim \frac{\lambda^k}{k!} e^{-\lambda} \]

\[\hat{\lambda} = \frac{c_t}{N} \]

where \(c_t \) is collection frequency of \(t \) (i.e. total occurrences of \(t \), not just number of documents occurring in; \(c_t \geq f_t \)).

- In practice:
 - One-Poisson model reasonable fit for content-less words
 - But poor fit for content-bearing words (higher \(f_{d,t} \) more likely than Poisson model predicts)
The One-Poisson model

Empirically, one-Poisson fits content-less words ok
But poor fit for content-ful words
 More frequent high $f_{d,t}$ than expected2

Table 1. Frequency Distributions for 19 Word Types and Expected Frequencies Assuming a Poisson Distribution with $\lambda = 53/650$

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Word Type</th>
<th>Number of Documents Containing k Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>act</td>
<td>608</td>
</tr>
<tr>
<td>51</td>
<td>actions</td>
<td>617</td>
</tr>
<tr>
<td>54</td>
<td>attitude</td>
<td>610</td>
</tr>
<tr>
<td>52</td>
<td>based</td>
<td>600</td>
</tr>
<tr>
<td>53</td>
<td>body</td>
<td>605</td>
</tr>
<tr>
<td>52</td>
<td>castration</td>
<td>617</td>
</tr>
<tr>
<td>55</td>
<td>cathexis</td>
<td>619</td>
</tr>
<tr>
<td>51</td>
<td>comic</td>
<td>642</td>
</tr>
<tr>
<td>53</td>
<td>concerned</td>
<td>601</td>
</tr>
<tr>
<td>53</td>
<td>conditions</td>
<td>604</td>
</tr>
<tr>
<td>55</td>
<td>consists</td>
<td>602</td>
</tr>
<tr>
<td>53</td>
<td>factor</td>
<td>609</td>
</tr>
<tr>
<td>52</td>
<td>factors</td>
<td>611</td>
</tr>
<tr>
<td>55</td>
<td>feeling</td>
<td>613</td>
</tr>
<tr>
<td>52</td>
<td>find</td>
<td>602</td>
</tr>
<tr>
<td>54</td>
<td>following</td>
<td>604</td>
</tr>
<tr>
<td>51</td>
<td>force</td>
<td>603</td>
</tr>
<tr>
<td>51</td>
<td>forces</td>
<td>609</td>
</tr>
<tr>
<td>52</td>
<td>forgetting</td>
<td>629</td>
</tr>
<tr>
<td>53</td>
<td>expected, assuming Poisson distribution</td>
<td>599</td>
</tr>
</tbody>
</table>

Two-Poisson Model

Suggests fitting with two Poisson distributions:

Elite dist a_{tf} for docs “about” concept represented by term.

Non-elite dist n_{tf} for docs not “about” concept

Model $a_{tf} = P(f_{d,t}|E)$, $n_{tf} = P(f_{d,t}|\bar{E})$ as Poisson distributions with different rates:

\begin{align*}
 a_{tf} & \sim \frac{\lambda^k}{k!} e^{-\lambda} \quad (5) \\
 n_{tf} & \sim \frac{\mu^k}{k!} e^{-\mu} \quad (6)
\end{align*}

($\lambda > \mu$). Then distribution of $f_{d,t}$ given by:

\begin{equation}
P(f_{d,t} = f) = \pi \frac{\lambda^k}{k!} e^{-\lambda} + (1 - \pi) \frac{\mu^k}{k!} e^{-\mu} \quad (7)
\end{equation}

where π is probability that document is elite. This can be made to fit data ok.
Eliteness and relevance

- Eliteness is not the same thing as relevance
- Document can be elite but not relevant, relevant but not elite
- But term frequency, conditioned on eliteness, is independent of relevance
- Therefore:

\begin{align*}
P(f_{d,t} = f | R) &= P(f | E)P(E | R) + P(f | \neg E)P(\neg E | R) \quad (8) \\
P(f_{d,t} = f | \neg R) &= P(f | E)P(E | \neg R) + P(f | \neg E)P(\neg E | \neg R) \quad (9)
\end{align*}
Expanding the Two-Poisson Model

Writing:

\[p' = P(E|R) ; \quad q' = P(E|\bar{R}) \tag{10} \]

we can then expand Equation 2:

\[w_{tf} = \log \frac{p_{tf} u_0}{u_{tf} p_0} \tag{11} \]

with Equations 8 and 9 as\(^3\):

\[w_{tf} = \log \frac{(p' \lambda^f e^{-\lambda} + (1 - p') \mu^f e^{-\mu})(q' e^{-\lambda} + (1 - q') e^{-\mu})}{(q' \lambda^f e^{-\lambda} + (1 - q') \mu^f e^{-\mu})(p' e^{-\lambda} + (1 - p') e^{-\mu})} \]

\(^3\)Robertson and Walker, 1994
Estimating the Two-Poisson

\[w_{tf} = \log \frac{(p' \lambda^{tf} e^{-\lambda} + (1 - p') \mu^{tf} e^{-\mu}) \left(q' e^{-\lambda} + (1 - q') e^{-\mu}\right)}{(q' \lambda^{tf} e^{-\lambda} + (1 - q') \mu^{tf} e^{-\mu}) \left(p' e^{-\lambda} + (1 - p') e^{-\mu}\right)} \]

(12)

Apparently going backwards:

- Now have four or five parameters to estimate per term
- \(p' = P(E|R) \) can’t be estimated, even with rel judgments
 - Would have to also judge “eliteness”
Approximating the Two-Poisson

\[w_{tf} = \log \left(\frac{(p' \lambda^{tf} e^{-\lambda} + (1-p')\mu^{tf} e^{-\mu}) (q'e^{-\lambda} + (1-q')e^{-\mu})}{(q' \lambda^{tf} e^{-\lambda} + (1-q')\mu^{tf} e^{-\mu}) (p'e^{-\lambda} + (1-p')e^{-\mu})} \right) \]

(13)

At this point, Robertson and Walker (1994) throw up their hands and suggest approximating the “shape” of Equation 13:

1. Zero for \(tf = 0 \)
2. Increases monotonically with \(tf \)
3. To asymptotic maximum
4. Of Equation 1-like form \(\log \frac{p'(1-q')}{q'(1-p')} \)

From this, they suggest:

\[w_{tf} = \frac{tf}{k_1 + tf} \cdot w_t^{\{1\}} \]

(14)

for some tunable constant \(k_1 \), and recalling that \(w_t^{\{1\}} \) simplifies to IDF if we set \(p_t \) to 0.5.
Robertson and collaborators developed series weight functions:

\[
w = 1 \quad \text{(BM0)}
\]

\[
w_t^{1} = \log \frac{N - f_t + 0.5}{f_t + 0.5} \times \frac{f_{q,t}}{k_3 + f_{q,t}} \quad \text{(BM1)}
\]

If \(k_3 = 0 \), a slight variant on IDF. Behaves strangely if \(f_t > N/2 \).

\[
w_{15} = \frac{f_{d,t}}{k_1 + f_{d,t}} \times w_t^{1} + k_2 \times |q| \frac{\overline{|d|} - |d|}{|d| + |d|} \quad \text{(BM15)}
\]

Robertson and Walker (1994), with doc length and qry freq.

\[
w_{11} = \frac{f_{d,t}}{\frac{k_1 \times |d|}{|d|} + f_{d,t}} \times w_t^{1} + k_2 \times |q| \frac{\overline{|d|} - |d|}{|d| + |d|} \quad \text{(BM11)}
\]

Same as BM15 except \(f_{d,t} \) downweighted by document length.
BM25

\[w_{25} = \log \frac{N - f_t + 0.5}{f_t + 0.5} \times \frac{(k_1 + 1)f_{d,t}}{k_1((1 - b) + \frac{b|d|}{|d|}) + f_{d,t}} \times \frac{(k_3 + 1)f_{q,t}}{k_3 + f_{q,t}} \]

(BM25)

- BM25 combines aspects of B11 and B15
- \(k_1, b, \) and \(k_3 \) need to be tuned (\(k_3 \) only for very long queries).
 - \(k_1 \approx 1.5 \) and \(b \approx 0.75 \) common defaults.
- BM25 highly effective, most widely used weighting in IR
- Has TF, IDF, and document length components
- But only loosely inspired by probabilistic model
What have we achieved?

Pros
- Started from plausible probabilistic model of term distribution
- Shown how it can be made to fit something like TF*IDF
- Providing a probabilistic justification TF*IDF-like approaches

Cons
- Directly trying to estimate $P(f_{dt}|R)$ not practicable in retrieval (too many parameters, not enough evidence)
- Such approaches end up as ad-hoc as geometric model
- Progress requires letting query tell us what relevance looks like
- This the approach of language models
Probabilistic models promise to directly estimate (monotonic function of) $P(R|d, q)$

Classical models attempt to build upon collection statistics (e.g. $P(d_t|R, q) = $ proportion of relevant documents containing t.)

But lack of evidence at retrieval time forces very rough approximations.

Effective weighting schemes like BM25 are at best “inspired” by probabilistic ideas.
Looking back and forward

Forward

- Braver steps are required to make probabilistic models practical
- In particular, query must tell us more about relevance
- Language models attempt to implement this
Further reading

- Robertson and Waller, “Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval”, \textit{SIGIR}, 1994 (how to go from 2-Poisson model to something implementable like BM25).

